Knocking Sound Detection for Acoustic Condition Monitoring in Industrial Facilities

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Monitoring the health of machinery in industrial environments is critical to prevent costly downtime and production disruptions. Acoustic measurements offer a promising alternative to traditional methods like vibration analysis due to their simpler instrumentation. However, accurately detecting fault sounds amidst high background noise remains a significant challenge. Machine learning approaches, for example, require extensive datasets encompassing normal and faulty operation to learn the machine's behavior. In this letter, we propose a different approach by focusing on knocking sounds, which are typical indicators of faults in industrial machinery. We describe these fault conditions using an appropriate signal model and use a general likelihood ratio test as a detector. As demonstrated in this letter, by accurately describing the fault pattern based on a small amount of fault data, very low false positive rates can be achieved, significantly reducing the effort required to collect extensive data sets for faulty machine operation.

Originalspracheenglisch
Aufsatznummer6013004
Seitenumfang4
FachzeitschriftIEEE Sensors Letters
Jahrgang8
Ausgabenummer10
DOIs
PublikationsstatusVeröffentlicht - 10 Okt. 2024

ASJC Scopus subject areas

  • Instrumentierung
  • Elektrotechnik und Elektronik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Knocking Sound Detection for Acoustic Condition Monitoring in Industrial Facilities“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren