Aktivitäten pro Jahr
Abstract
Modern data analysis is confronted by increasing dimensionality of problems, mainly contributed by higher resolutions available for data acquisition and by our use of larger models with more degrees of freedom to investigate complex systems deeper. High dimensionality constitutes one aspect of “big data”, which brings us not only computational but also statistical and perceptional challenges. Most data analysis problems are solved using techniques of optimization, where large-scale optimization requires faster algorithms and implementations. Computed solutions must be evaluated for statistical quality, since otherwise false discoveries can be made. Recent papers suggest to control and modify algorithms themselves for better statistical properties. Finally, human perception puts an inherent limit on our understanding to three dimensional spaces, making it almost impossible to grasp complex phenomena. For aid, we use dimensionality reduction or other techniques, but these usually do not capture relations between interesting objects. Here graph-based knowledge representation has lots of potential, for instance to create perceivable and interactive representations and to perform new types of analysis based on graph theory and network topology. In this
article, we show glimpses of new developments in these aspects.
article, we show glimpses of new developments in these aspects.
Originalsprache | englisch |
---|---|
Titel | Solving Large Scale Learning Tasks. Challenges and Algorithms |
Untertitel | Springer Lecture Notes in Artificial Intelligence LNAI 9580 |
Redakteure/-innen | Stefan Michaelis, Nico Piatkowski, Marco Stolpe |
Erscheinungsort | Heidelberg, Berlin, New York |
Herausgeber (Verlag) | Springer International |
Seiten | 148-167 |
Seitenumfang | 167 |
ISBN (elektronisch) | 978-3-319-41706-6 |
ISBN (Print) | 978-3-319-41705-9 |
DOIs | |
Publikationsstatus | Veröffentlicht - 10 Juli 2016 |
Veranstaltung | Workshop Machine Learning for Biomedicine at TU Graz - TU Graz, Graz, Österreich Dauer: 26 Jan. 2016 → 26 Jan. 2016 |
Publikationsreihe
Name | Lecture Notes in Computer Science book series |
---|---|
Band | LNAI, volume 9580 |
ISSN (elektronisch) | 0302-9743 |
Konferenz
Konferenz | Workshop Machine Learning for Biomedicine at TU Graz |
---|---|
Land/Gebiet | Österreich |
Ort | Graz |
Zeitraum | 26/01/16 → 26/01/16 |
ASJC Scopus subject areas
- Artificial intelligence
Fields of Expertise
- Information, Communication & Computing
Treatment code (Nähere Zuordnung)
- Basic - Fundamental (Grundlagenforschung)
Fingerprint
Untersuchen Sie die Forschungsthemen von „Knowledge Discovery from Complex High Dimensional Data“. Zusammen bilden sie einen einzigartigen Fingerprint.Aktivitäten
- 1 Aufnahme von Gästen