Abstract
For integers m and n, we study the problem of finding good lower bounds for the size of progression-free sets in (Zmn,+). Let rk(Zmn) denote the maximal size of a subset of Zmn without arithmetic progressions of length k and let P-(m) denote the least prime factor of m. We construct explicit progression-free sets and obtain the following improved lower bounds for rk(Zmn):If k≥ 5 is odd and P-(m) ≥ (k+ 2) / 2 , then (Formula presented.)If k≥ 4 is even, P-(m) ≥ k and m≡-1modk, then (Formula presented.) Moreover, we give some further improved lower bounds on rk(Zpn) for primes p≤ 31 and progression lengths 4 ≤ k≤ 8.
Originalsprache | englisch |
---|---|
Seiten (von - bis) | 1443-1452 |
Seitenumfang | 10 |
Fachzeitschrift | Designs, Codes, and Cryptography |
Jahrgang | 91 |
Ausgabenummer | 4 |
Frühes Online-Datum | 15 Dez. 2022 |
DOIs | |
Publikationsstatus | Veröffentlicht - Apr. 2023 |
ASJC Scopus subject areas
- Theoretische Informatik
- Angewandte Informatik
- Diskrete Mathematik und Kombinatorik
- Angewandte Mathematik