Lattice Points in Algebraic Cross-polytopes and Simplices

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


The number of lattice points |tP∩Zd|, as a function of the real variable t>1 is studied, where P⊂Rd belongs to a special class of algebraic cross-polytopes and simplices. It is shown that the number of lattice points can be approximated by an explicitly given polynomial of t depending only on P. The error term is related to a simultaneous Diophantine approximation problem for algebraic numbers, as in Schmidt’s theorem. The main ingredients of the proof are a Poisson summation formula for general algebraic polytopes, and a representation of the Fourier transform of the characteristic function of an arbitrary simplex in the form of a complex line integral.
Seiten (von - bis)145-169
FachzeitschriftDiscrete & Computational Geometry
PublikationsstatusVeröffentlicht - Juli 2018
Extern publiziertJa


Untersuchen Sie die Forschungsthemen von „Lattice Points in Algebraic Cross-polytopes and Simplices“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren