Learning Joint Demosaicing and Denoising Based on Sequential Energy Minimization

Teresa Klatzer, Kerstin Hammernik, Patrick Knöbelreiter, Thomas Pock

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung


Demosaicing is an important first step for color image acquisition. For practical reasons, demosaicing algorithms have to be both efficient and yield high quality results in the
presence of noise. The demosaicing problem poses several challenges, e.g. zippering and false color artifacts as well as edge blur. In this work, we introduce a novel learning based method that can overcome these challenges. We formulate demosaicing as an image restoration problem and propose to learn efficient regularization inspired by a variational energy minimization framework that can be trained for different sensor layouts. Our algorithm performs joint demosaicing and denoising in close relation to the real physical mosaicing process on a camera sensor. This is achieved by learning a sequence of energy minimization problems composed of a set of RGB filters and corresponding activation functions. We evaluate our algorithm on the Microsoft Demosaicing data set in terms of peak signal to noise ratio (PSNR) and structured similarity index (SSIM). Our algorithm is highly efficient both in image quality and run time. We achieve an improvement of up to 2.6 dB over recent state-of-the-art algorithms.
TitelIEEE International Conference on Computational Photography (ICCP)
PublikationsstatusVeröffentlicht - 13 Mai 2016
VeranstaltungInternational Conference of Computational Photography - Evanston, IL, USA / Vereinigte Staaten
Dauer: 13 Mai 201615 Mai 2016


KonferenzInternational Conference of Computational Photography
Land/GebietUSA / Vereinigte Staaten
OrtEvanston, IL

Dieses zitieren