Longer Gaps Between Values of Binary Quadratic Forms

Rainer Dietmann*, Christian Elsholtz, Alexander Kalmynin, Sergei Konyagin, James Maynard

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

We prove new lower bounds on large gaps between integers that are sums of two squares or are represented by any binary quadratic form of discriminant D, improving the results of Richards. Let s1, s2, . . . be the sequence of positive integers, arranged in increasing order, that are representable by any binary quadratic form of fixed discriminant D, then (Formula presented) improving a lower bound of 1/ |D | of Richards. In the special case of sums of two squares, we improve Richards’s bound of 1/4 to 390/449 = 0.868 . . .. We also generalize Richards’s result in another direction: if d is composite we show that there exist constants Cd such that for all integer values of x none of the values pd(x) = Cd+xd is a sum of two squares. Let d be a prime. For all k ∈ N, there exists a smallest positive integer yk such that none of the integers yk + jd, 1 ≤ j ≤ k, is a sum of two squares.

Originalspracheenglisch
Seiten (von - bis)10313-10349
Seitenumfang37
FachzeitschriftInternational Mathematics Research Notices
Jahrgang2023
Ausgabenummer12
DOIs
PublikationsstatusVeröffentlicht - 1 Juni 2023

ASJC Scopus subject areas

  • Allgemeine Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Longer Gaps Between Values of Binary Quadratic Forms“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren