Mahalanobis Distance Learning for Person Re-Identification

Peter Roth, Martin Hirzer, Martin Köstinger, Csaba Beleznai, Horst Bischof

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in Buch/Bericht

Abstract

Recently, Mahalanobis metric learning has gained a considerable interest for single-shot person re-identification. The main idea is to build on an existing image representation and to learn a metric that reflects the visual camera-to-camera transitions, allowing for a more powerful classification. The goal of this chapter is twofold. We first review the main ideas of Mahalanobis metric learning in general and then give a detailed study on different approaches for the task of single-shot person re-identification, also comparing to the state-of-the-art. In particular, for our experiments we used Linear Discriminant Metric Learning (LDML), Information Theoretic Metric Learning (ITML), Large Margin Nearest Neighbor (LMNN), Large Margin Nearest Neighbor with Rejection (LMNN-R), Efficient Impostor-based Metric Learning (EIML), and KISSME. For our evaluations we used four different publicly available datasets (i.e., VIPeR, ETHZ, PRID 2011, and CAVIAR4REID). Additionally, we generated the new, more realistic PRID 450S dataset, where we also provide detailed segmentations. For the latter one, we also evaluated the influence of using well segmented foreground and background regions. Finally, the corresponding results are presented and discussed.
Originalspracheenglisch
TitelPerson Re-Identification
ErscheinungsortLondon
Herausgeber (Verlag)Springer
Seiten247-267
Auflage1
ISBN (Print)978-1-4471-6295-7
PublikationsstatusVeröffentlicht - 2014

Publikationsreihe

NameAdvances in Computer Vision and Pattern Recognition
Herausgeber (Verlag)Springer

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Mahalanobis Distance Learning for Person Re-Identification“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren