Merging Neural Networks with Traditional Evaluations in Crazyhouse

Anei Makovec, Johanna Pirker, Matej Guid*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

In the intricate landscape of game-playing algorithms, Crazyhouse stands as a complex variant of chess where captured pieces are reintroduced, presenting unique evaluation challenges. This paper explores a hybrid approach that combines traditional evaluation functions with neural network-based evaluations, seeking an optimal balance in performance. Through rigorous experimentation, including self-play, matchups against a variant of the renowned program, Go-deep experiments, and score deviations, we present compelling evidence for the effectiveness of a weighted sum of both evaluations. Remarkably, in our experiments, the combination of 75% neural network and 25% traditional evaluation consistently emerged as the most effective choice. Furthermore, we introduce the use of Best-Change rates, which have previously been associated with evaluation quality, in the context of Monte Carlo tree search-based algorithms.

Originalspracheenglisch
TitelAdvances in Computer Games - 18th International Conference, ACG 2023, Revised Selected Papers
Redakteure/-innenMichael Hartisch, Chu-Hsuan Hsueh, Jonathan Schaeffer
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten15-25
Seitenumfang11
ISBN (Print)9783031549670
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung18th International Conference on Advances in Computer Games: ACG 2023 - Virtual, Online
Dauer: 28 Nov. 202330 Nov. 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14528 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz18th International Conference on Advances in Computer Games
Kurztitel ACG 2023
OrtVirtual, Online
Zeitraum28/11/2330/11/23

ASJC Scopus subject areas

  • Theoretische Informatik
  • Allgemeine Computerwissenschaft

Fingerprint

Untersuchen Sie die Forschungsthemen von „Merging Neural Networks with Traditional Evaluations in Crazyhouse“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren