Abstract
Optical microcavities confine light to wavelength-scale volumes and are a key component for manipulating and enhancing the interaction of light, vacuum states, and matter. Current microcavities are constrained to a small number of spatial mode profiles. Imaging cavities can accommodate complicated modes but require an externally preshaped input. Here, we experimentally demonstrate a visible-wavelength, metasurface-based holographic microcavity that overcomes these limitations. The micrometer-scale metasurface cavity fulfills the round-trip condition for a designed mode with a complex-shaped intensity profile and thus selectively enhances light that couples to this mode, achieving a spectral bandwidth of 0.8 nm. By imaging the intracavity mode, we show that the holographic mode changes quickly with the cavity length and that the cavity displays the desired spatial mode profile only close to the design cavity length. When a metasurface is placed on a distributed Bragg reflector and steep phase gradients are realized, the correct choice of the reflector’s top layer material can boost metasurface performance considerably. The applied forward-design method can be readily transferred to other spectral regimes and mode profiles.
Originalsprache | englisch |
---|---|
Seiten (von - bis) | 941-949 |
Seitenumfang | 9 |
Fachzeitschrift | ACS Photonics |
Jahrgang | 11 |
Ausgabenummer | 3 |
DOIs | |
Publikationsstatus | Veröffentlicht - 20 März 2024 |
ASJC Scopus subject areas
- Elektronische, optische und magnetische Materialien
- Biotechnology
- Atom- und Molekularphysik sowie Optik
- Elektrotechnik und Elektronik