Projekte pro Jahr
Abstract
In a polymer electrolyte membrane (PEM) fuel cell, the following degradation mechanisms are associated with the catalyst particles and their support: carbon support corrosion triggered by carbon and platinum oxidation, platinum dissolution with redeposition, and particle detachment with agglomeration. In this work, an electrochemical model for those degradation effects is presented as well as its coupling with a three-dimensional computational fluid dynamics PEM fuel cell performance model. The overall model is used to calculate polarization curves and current density distributions of a PEM fuel cell in a fresh and aged state as well as the degradation process during an accelerated stress test with 30 000 voltage cycles. The obtained simulation results are compared to measurements on a three-serpentine channel PEM fuel cell with an active area of 25 cm 2 under various temperatures and humidities. The experimental data are obtained with a segmented test cell using respective degradation protocols and test conditions proposed by the United States Department of Energy. In addition to the temperature and humidity changes, the influence of geometry and material parameters on the degree of degradation and the resulting fuel cell performance is explored in detail.
Originalsprache | englisch |
---|---|
Aufsatznummer | e202300237 |
Fachzeitschrift | Fuel Cells |
Jahrgang | 24 |
Ausgabenummer | 5 |
Frühes Online-Datum | 14 Okt. 2024 |
DOIs | |
Publikationsstatus | Veröffentlicht - Okt. 2024 |
ASJC Scopus subject areas
- Energieanlagenbau und Kraftwerkstechnik
- Erneuerbare Energien, Nachhaltigkeit und Umwelt
Fields of Expertise
- Mobility & Production
Fingerprint
Untersuchen Sie die Forschungsthemen von „Modeling of Catalyst Degradation in Polymer Electrolyte Membrane Fuel Cells Applied to Three-Dimensional Computational Fluid Dynamics Simulation“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Laufend
-
AlpeDHues - Alterungsanalyse und Performanceoptimierung von Brennstoffzellen im hochdynamischen Betrieb
Bodner, M., Hacker, V. & Edjokola, J. M.
1/01/22 → 30/06/25
Projekt: Forschungsprojekt