MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection

J. Akub Micorek, Horst Possegger, Dominik Narnhofer, Horst Bischof, Mateusz Koziński

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

We propose a novel approach to video anomaly detection: we treat feature vectors extracted from videos as re-alizations of a random variable with a fixed distribution and model this distribution with a neural network. This lets us estimate the likelihood of test videos and detect video anomalies by thresholding the likelihood estimates. We train our video anomaly detector using a modification of de-noising score matching, a method that injects training data with noise to facilitate modeling its distribution. To elim-inate hyperparameter selection, we model the distribution of noisy video features across a range of noise levels and introduce a regularizer that tends to align the models for different levels of noise. At test time, we combine anomaly indications at multiple noise scales with a Gaussian mix-ture model. Running our video anomaly detector induces minimal delays as inference requires merely extracting the features and forward-propagating them through a shallow neural network and a Gaussian mixture model. Our ex-periments on five popular video anomaly detection bench-marks demonstrate state-of-the-art performance, both in the object-centric and in the frame-centric setup.

Originalspracheenglisch
TitelProceedings - 2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Herausgeber (Verlag)IEEE Computer Society
Seiten18868-18877
Seitenumfang10
ISBN (elektronisch)9798350353006
DOIs
PublikationsstatusVeröffentlicht - 16 Sept. 2024
Veranstaltung2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024 - Seattle, USA / Vereinigte Staaten
Dauer: 16 Juni 202422 Juni 2024

Publikationsreihe

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
ISSN (Print)1063-6919

Konferenz

Konferenz2024 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2024
Land/GebietUSA / Vereinigte Staaten
OrtSeattle
Zeitraum16/06/2422/06/24

ASJC Scopus subject areas

  • Software
  • Maschinelles Sehen und Mustererkennung

Fingerprint

Untersuchen Sie die Forschungsthemen von „MULDE: Multiscale Log-Density Estimation via Denoising Score Matching for Video Anomaly Detection“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren