MWD data analysis for optimization of tunnel excavation

Alla Sapronova*, Paul Johannes Unterlaß, Kazuo Sakai, Shuntaro Miyanaga, Abdallah Ahmed Fouad Elsayed Soliman, Thomas Marcher

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

The drill and blast tunneling method applies to various rock mass conditions and is widely used in underground construction. Optimization of drill and blast requires careful planning and currently depends on the engineers’ ability to execute the art of blasting. Intelligent analysis of measurement while drilling (MWD) data from blast holes can be used for process optimizations, responsible resource utilization, and risk minimization. For example, an Artificial Intelligence (AI) -based decision support system (DSS) can suggest the volume and content of explosive material. However, to develop a reliable and trustworthy DSS, one needs to understand the relation between MWD data logs and the underlying lithology conditions, like composition or type of rock mass. This work provides an overview of the most common methods for MWD data analysis. Selected methods are then utilized to develop predictive machine-learning (ML) models, which are further validated with available MWD data.
Originalspracheenglisch
TitelProceedings of the ISRM 15th International Congress on Rock Mechanics and Rock Engineering & 72nd Geomechanics Colloquium
UntertitelChallenges in Rock Mechanics and Rock Engineering
Redakteure/-innenWulf Schubert, Alexander Kluckner
ErscheinungsortSalzburg
Herausgeber (Verlag)Austrian Society for Geomechanics
Seiten610-615
ISBN (elektronisch)978-3-9503898-3-8
PublikationsstatusVeröffentlicht - 14 Okt. 2023

Fingerprint

Untersuchen Sie die Forschungsthemen von „MWD data analysis for optimization of tunnel excavation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren