Nanostructured supramolecular networks from self-assembled diamondoid molecules under ultracold conditions

Marija Alešković, Florian Küstner, Roman Messner, Florian Lackner*, Wolfgang E. Ernst*, Marina Šekutor*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Diamondoid molecules and their derivatives have attracted attention as fascinating building blocks for advanced functional materials. Depending on the balance between hydrogen bonds and London dispersion interactions, they can self-organize in different cluster structures with functional groups tailored for various applications. Here, we present a new approach to supramolecular aggregation where self-assembly of diamondoid acids and alcohols in the ultracold environment of superfluid helium nanodroplets (HNDs) was analyzed by a combination of time-of-flight mass spectrometry and computational tools. Experimentally observed magic numbers of the assembled cluster sizes were successfully identified and computed cluster structures gave valuable insights into a different conglomeration mode when compared to previously explored less-polar diamondoid derivatives. We have confirmed that functional groups acting as good hydrogen bond donors completely take over the self-organization process, resulting in fascinating pair-wise or cyclic supramolecular assemblies. Particularly noteworthy is that mono- and bis-substituted diamondoid derivatives of both series engage in completely different modes of action, which is reflected in differing non-covalent cluster geometries. Additionally, formed cyclic clusters with a polar cavity in the center and a non-polar diamondoid outer layer can be of high interest in porous material design and provide insights into the structural requirements needed to produce bulk materials with desired properties.

Originalspracheenglisch
Seiten (von - bis)17869-17876
Seitenumfang8
FachzeitschriftPhysical Chemistry, Chemical Physics
Jahrgang25
Ausgabenummer27
Frühes Online-Datum13 Juni 2023
DOIs
PublikationsstatusVeröffentlicht - 21 Juli 2023

ASJC Scopus subject areas

  • Allgemeine Physik und Astronomie
  • Physikalische und Theoretische Chemie

Fields of Expertise

  • Advanced Materials Science

Kooperationen

  • NAWI Graz

Fingerprint

Untersuchen Sie die Forschungsthemen von „Nanostructured supramolecular networks from self-assembled diamondoid molecules under ultracold conditions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren