NeRF-FF: a plug-in method to mitigate defocus blur for runtime optimized neural radiance fields

Tristan Wirth*, Arne Rak, Max von Buelow, Volker Knauthe, Arjan Kuijper, Dieter W. Fellner

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Neural radiance fields (NeRFs) have revolutionized novel view synthesis, leading to an unprecedented level of realism in rendered images. However, the reconstruction quality of NeRFs suffers significantly from out-of-focus regions in the input images. We propose NeRF-FF, a plug-in strategy that estimates image masks based on Focus Frustums (FFs), i.e., the visible volume in the scene space that is in-focus. NeRF-FF enables a subsequently trained NeRF model to omit out-of-focus image regions during the training process. Existing methods to mitigate the effects of defocus blurred input images often leverage dynamic ray generation. This makes them incompatible with the static ray assumptions employed by runtime-performance-optimized NeRF variants, such as Instant-NGP, leading to high training times. Our experiments show that NeRF-FF outperforms state-of-the-art approaches regarding training time by two orders of magnitude—reducing it to under 1 min on end-consumer hardware—while maintaining comparable visual quality.

Originalspracheenglisch
Seiten (von - bis)5043-5055
Seitenumfang13
FachzeitschriftVisual Computer
Jahrgang40
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - Juli 2024

ASJC Scopus subject areas

  • Software
  • Maschinelles Sehen und Mustererkennung
  • Computergrafik und computergestütztes Design

Fingerprint

Untersuchen Sie die Forschungsthemen von „NeRF-FF: a plug-in method to mitigate defocus blur for runtime optimized neural radiance fields“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren