On interval decomposability of 2D persistence modules.

Hideto Asashiba, Mickaël Buchet*, Emerson G. Escolar, Ken Nakashima, Michio Yoshiwaki

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


In the persistent homology of filtrations, the indecomposable decompositions provide the persistence diagrams. However, in almost all cases of multidimensional persistence, the classification of all indecomposable modules is known to be a wild problem. One direction is to consider the subclass of interval-decomposable persistence modules, which are direct sums of interval representations. We introduce the definition of pre-interval representations, a more natural algebraic definition, and study the relationships between pre-interval, interval, and thin indecomposable representations. We show that over the “equioriented” commutative 2D grid, these concepts are equivalent. Moreover, we provide a criterion for determining whether or not an nD persistence module is interval/pre-interval/thin-decomposable without having to explicitly compute decompositions. For 2D persistence modules, we provide an algorithm for determining interval-decomposability, together with a worst-case complexity analysis that uses the total number of intervals in an equioriented commutative 2D grid. We also propose several heuristics to speed up the computation.

FachzeitschriftComputational Geometry
PublikationsstatusVeröffentlicht - 1 Aug. 2022

ASJC Scopus subject areas

  • Computational Mathematics
  • Steuerung und Optimierung
  • Geometrie und Topologie
  • Angewandte Informatik
  • Theoretische Informatik und Mathematik

Fields of Expertise

  • Information, Communication & Computing

Dieses zitieren