On large values of L(σ,χ)

Christoph Aistleitner*, Kamalakshya Mahatab, Marc Alexandre Munsch, Alexandre Peyrot

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


In recent years, a variant of the resonance method was developed which allowed to obtain improved Ω-results for the Riemann zeta function along vertical lines in the critical strip. In the present paper, we show how this method can be adapted to prove the existence of large values of |L(σ,χ)| in the range σ∈(1/2,1]⁠, and to estimate the proportion of characters for which |L(σ,χ)| is of such a large order. More precisely, for every fixed σ∈(1/2,1)⁠, we show that for all sufficiently large q⁠, there is a non-principal character χ(modq) such that log∣∣L(σ,χ)∣∣≥C(σ)(logq)1−σ(loglogq)−σ⁠. In the case σ=1⁠, we show that there is a non-principal character χ(modq) for which |L(1,χ)|≥eγ(log2q+log3q−C)⁠. In both cases, our results essentially match the prediction for the actual order of such extreme values, based on probabilistic models.
Seiten (von - bis)831-848
FachzeitschriftThe Quarterly Journal of Mathematics
PublikationsstatusVeröffentlicht - Dez. 2018


Untersuchen Sie die Forschungsthemen von „On large values of L(σ,χ)“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren