On nonlinear magnetic field solvers using local Quasi-Newton updates

H. Egger, F. Engertsberger*, L. Domenig, K. Roppert, M. Kaltenbacher

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Fixed-point or Newton-methods are typically employed for the numerical solution of nonlinear systems arising from discretization of nonlinear magnetic field problems. We here discuss an alternative strategy which uses Quasi-Newton updates locally, at every material point, to construct appropriate linearizations of the material behavior during the nonlinear iteration. The resulting scheme shows similar fast convergence as the Newton-method but, like the fixed-point methods, does not require derivative information of the underlying material law. As a consequence, the method can be used for the efficient solution of models with hysteresis which involve nonsmooth material behavior. The implementation of the proposed scheme can be realized in standard finite-element codes in parallel to the fixed-point and the Newton method. A full convergence analysis of all three methods is established proving global mesh-independent convergence. The theoretical results and the performance of the nonlinear iterative schemes are evaluated by computational tests for a typical benchmark problem.

Originalspracheenglisch
Seiten (von - bis)20-31
Seitenumfang12
FachzeitschriftComputers and Mathematics with Applications
Jahrgang183
DOIs
PublikationsstatusVeröffentlicht - 1 Apr. 2025

ASJC Scopus subject areas

  • Modellierung und Simulation
  • Theoretische Informatik und Mathematik
  • Computational Mathematics

Fingerprint

Untersuchen Sie die Forschungsthemen von „On nonlinear magnetic field solvers using local Quasi-Newton updates“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren