Abstract
The asymptotic behavior of exponential sums N k=1 exp(2πin k α) for Hadamard lacunary (n k ) is well known, but for general (n k ) very few precise results exist, due to number theoretic difficulties. It is therefore natural to consider random∑ (n k ), and in this paper we prove the law of the iterated logarithm for N k=1 exp(2πin k α) if the gaps n k+1 −n k are independent, identically distributed random variables. As a comparison, we give a lower bound for the discrepancy of {n k α} under the same random model, exhibiting a completely different behavior.
Originalsprache | englisch |
---|---|
Seiten (von - bis) | 3259-3280 |
Seitenumfang | 22 |
Fachzeitschrift | Transactions of the American Mathematical Society |
Jahrgang | 371 |
Ausgabenummer | 5 |
DOIs | |
Publikationsstatus | Veröffentlicht - 1 Mai 2019 |
ASJC Scopus subject areas
- Allgemeine Mathematik
- Angewandte Mathematik