On the law of the iterated logarithm for random exponential sums

István Berkes, Bence Borda

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The asymptotic behavior of exponential sums N k=1 exp(2πin k α) for Hadamard lacunary (n k ) is well known, but for general (n k ) very few precise results exist, due to number theoretic difficulties. It is therefore natural to consider random∑ (n k ), and in this paper we prove the law of the iterated logarithm for N k=1 exp(2πin k α) if the gaps n k+1 −n k are independent, identically distributed random variables. As a comparison, we give a lower bound for the discrepancy of {n k α} under the same random model, exhibiting a completely different behavior.

Originalspracheenglisch
Seiten (von - bis)3259-3280
Seitenumfang22
FachzeitschriftTransactions of the American Mathematical Society
Jahrgang371
Ausgabenummer5
DOIs
PublikationsstatusVeröffentlicht - 1 Mai 2019

ASJC Scopus subject areas

  • Allgemeine Mathematik
  • Angewandte Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the law of the iterated logarithm for random exponential sums“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren