On the Number of Distinct Fringe Subtrees in Binary Search Trees

Stephan Wagner*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

A fringe subtree of a rooted tree is a subtree that consists of a vertex and all its descendants. The number of distinct fringe subtrees in random trees has been studied by several authors, notably because of its connection to tree compaction algorithms. Here, we obtain a very precise result for binary search trees: it is shown that the number of distinct fringe subtrees in a binary search tree with n leaves is asymptotically equal to c1n/log n for a constant c1 ≈ 2.4071298335, both in expectation and with high probability. This was previously shown to be a lower bound, our main contribution is to prove a matching upper bound. The method is quite general and can also be applied to similar problems for other tree models.

Originalspracheenglisch
Titel35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms, A of A 2024
Redakteure/-innenCecile Mailler, Sebastian Wild
Herausgeber (Verlag)Schloss Dagstuhl - Leibniz-Zentrum für Informatik
ISBN (elektronisch)9783959773294
DOIs
PublikationsstatusVeröffentlicht - Juli 2024
Veranstaltung35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms: A of A 2024 - Bath, Großbritannien / Vereinigtes Königreich
Dauer: 17 Juni 202421 Juni 2024

Publikationsreihe

NameLeibniz International Proceedings in Informatics, LIPIcs
Band302
ISSN (Print)1868-8969

Konferenz

Konferenz35th International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms
KurztitelA of A 2024
Land/GebietGroßbritannien / Vereinigtes Königreich
OrtBath
Zeitraum17/06/2421/06/24

ASJC Scopus subject areas

  • Software

Fingerprint

Untersuchen Sie die Forschungsthemen von „On the Number of Distinct Fringe Subtrees in Binary Search Trees“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren