TY - JOUR
T1 - Organophosphate Detoxification and Acetylcholinesterase Reactivation Triggered by Zeolitic Imidazolate Framework Structural Degradation
AU - Martin-Romera, Javier D.
AU - Borrego-Marin, Emilio
AU - Jabalera-Ortiz, Pedro J.
AU - Carraro, Francesco
AU - Falcaro, Paolo
AU - Barea, Elisa
AU - Carmona, Francisco J.
AU - Navarro, Jorge A.R.
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024/2/28
Y1 - 2024/2/28
N2 - Organophosphate (OP) toxicity is related to inhibition of acetylcholinesterase (AChE) activity, which plays a key role in the neurotransmission process. In this work, we report the ability of different zinc zeolitic imidazolate frameworks (ZIFs) to behave as potential antidotes against OP poisoning. The Zn-L coordination bond (L = purine, benzimidazole, imidazole, or 2-methylimidazole) is sensitive to the G-type nerve agent model compounds diisopropylfluorophosphate (DIFP) and diisopropylchlorophosphate, leading to P-X (X = F or Cl) bond breakdown into nontoxic diisopropylphosphate. P-X hydrolysis is accompanied by ZIF structural degradation (Zn-imidazolate bond hydrolysis), with the concomitant release of the imidazolate linkers and zinc ions representing up to 95% of ZIF particle dissolution. The delivered imidazolate nucleophilic attack on the OP@AChE adduct gives rise to the recovery of AChE enzymatic function. P-X bond breakdown, ZIF structural degradation, and AChE reactivation are dependent on imidazolate linker nucleophilicity, framework topology, and particle size. The best performance is obtained for 20 nm nanoparticles (NPs) of Zn(2-methylimidazolate)2 (sod ZIF-8) exhibiting a DIFP degradation half-life of 2.6 min and full recovery of AChE activity within 1 h. 20 nm sod ZIF-8 NPs are not neurotoxic, as proven by in vitro neuroblastoma cell culture viability tests.
AB - Organophosphate (OP) toxicity is related to inhibition of acetylcholinesterase (AChE) activity, which plays a key role in the neurotransmission process. In this work, we report the ability of different zinc zeolitic imidazolate frameworks (ZIFs) to behave as potential antidotes against OP poisoning. The Zn-L coordination bond (L = purine, benzimidazole, imidazole, or 2-methylimidazole) is sensitive to the G-type nerve agent model compounds diisopropylfluorophosphate (DIFP) and diisopropylchlorophosphate, leading to P-X (X = F or Cl) bond breakdown into nontoxic diisopropylphosphate. P-X hydrolysis is accompanied by ZIF structural degradation (Zn-imidazolate bond hydrolysis), with the concomitant release of the imidazolate linkers and zinc ions representing up to 95% of ZIF particle dissolution. The delivered imidazolate nucleophilic attack on the OP@AChE adduct gives rise to the recovery of AChE enzymatic function. P-X bond breakdown, ZIF structural degradation, and AChE reactivation are dependent on imidazolate linker nucleophilicity, framework topology, and particle size. The best performance is obtained for 20 nm nanoparticles (NPs) of Zn(2-methylimidazolate)2 (sod ZIF-8) exhibiting a DIFP degradation half-life of 2.6 min and full recovery of AChE activity within 1 h. 20 nm sod ZIF-8 NPs are not neurotoxic, as proven by in vitro neuroblastoma cell culture viability tests.
KW - catalysis
KW - controlled drug delivery
KW - hydrolysis
KW - metal−organic framework
KW - nerve agent
UR - http://www.scopus.com/inward/record.url?scp=85185581762&partnerID=8YFLogxK
U2 - 10.1021/acsami.3c18855
DO - 10.1021/acsami.3c18855
M3 - Article
AN - SCOPUS:85185581762
SN - 1944-8244
VL - 16
SP - 9900
EP - 9907
JO - ACS Applied Materials and Interfaces
JF - ACS Applied Materials and Interfaces
IS - 8
ER -