Projekte pro Jahr
Abstract
Recent work has shown that cell phone mobility data has the unique potential to create accurate models for human mobility and consequently the spread of infected diseases [74]. While prior studies have exclusively relied on a mobile network operator’s subscribers’ aggregated data in modelling disease dynamics, it may be preferable to contemplate aggregated mobility data of infected individuals only. Clearly, naively linking mobile phone data with health records would violate privacy by either allowing to track mobility patterns of infected individuals, leak information on who is infected, or both. This work aims to develop a solution that reports the aggregated mobile phone location data of in-
fected individuals while still maintaining compliance with privacy expectations. To achieve privacy, we use homomorphic encryption, validation techniques derived from zero-knowledge proofs, and differential privacy.
Our protocol’s open-source implementation can process eight million sub-
scribers in 70 minutes.
fected individuals while still maintaining compliance with privacy expectations. To achieve privacy, we use homomorphic encryption, validation techniques derived from zero-knowledge proofs, and differential privacy.
Our protocol’s open-source implementation can process eight million sub-
scribers in 70 minutes.
Originalsprache | englisch |
---|---|
Titel | Proceedings on Privacy Enhancing Technologies 2022 |
Seiten | 768-788 |
Seitenumfang | 34 |
Band | 4 |
DOIs | |
Publikationsstatus | Veröffentlicht - 11 Juli 2022 |
Veranstaltung | 22nd Privacy Enhancing Technologies Symposium: PETS 2022 - Sydney, Australien Dauer: 11 Juli 2022 → 15 Juli 2022 Konferenznummer: 22 |
Konferenz
Konferenz | 22nd Privacy Enhancing Technologies Symposium |
---|---|
Kurztitel | PETS 2022 |
Land/Gebiet | Australien |
Zeitraum | 11/07/22 → 15/07/22 |
Fingerprint
Untersuchen Sie die Forschungsthemen von „Privately Connecting Mobility to Infectious Diseases via Applied Cryptography“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 2 Abgeschlossen
-
DDAI - Erklärbare, überprüfbare und datenschutzkonforme KI
Rechberger, C. (Teilnehmer (Co-Investigator)), Lindstaedt, S. (Teilnehmer (Co-Investigator)), Trügler, A. (Teilnehmer (Co-Investigator)), Pammer-Schindler, V. (Teilnehmer (Co-Investigator)), Kern, R. (Teilnehmer (Co-Investigator)) & Kowald, D. (Teilnehmer (Co-Investigator))
1/01/20 → 31/12/23
Projekt: Forschungsprojekt
-
EU - KRAKEN - Vermittlungs- und Marktplattform für personenbezogene Daten
Tauber, A. (Teilnehmer (Co-Investigator))
1/12/19 → 30/11/22
Projekt: Forschungsprojekt