Abstract
In this work, we tackle the problem of estimating the density fX of a random variable X by successive smoothing, such that the smoothed random variable Y fulfills the diffusion partial differential equation (∂t-Δ1)fY(·,t)=0 with initial condition fY(·,0)=fX. We propose a product-of-experts-type model utilizing Gaussian mixture experts and study configurations that admit an analytic expression for fY(·,t). In particular, with a focus on image processing, we derive conditions for models acting on filter, wavelet, and shearlet responses. Our construction naturally allows the model to be trained simultaneously over the entire diffusion horizon using empirical Bayes. We show numerical results for image denoising where our models are competitive while being tractable, interpretable, and having only a small number of learnable parameters. As a by-product, our models can be used for reliable noise level estimation, allowing blind denoising of images corrupted by heteroscedastic noise.
Originalsprache | englisch |
---|---|
Seiten (von - bis) | 504-528 |
Seitenumfang | 25 |
Fachzeitschrift | Journal of Mathematical Imaging and Vision |
Jahrgang | 66 |
Ausgabenummer | 4 |
DOIs | |
Publikationsstatus | Veröffentlicht - Aug. 2024 |
ASJC Scopus subject areas
- Statistik und Wahrscheinlichkeit
- Modellierung und Simulation
- Physik der kondensierten Materie
- Maschinelles Sehen und Mustererkennung
- Geometrie und Topologie
- Angewandte Mathematik