Property-Based Testing for Parameter Learning of Probabilistic Graphical Models

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Code quality is a requirement for successful and sustainable software development. The emergence of Artificial Intelligence and data driven Machine Learning in current applications makes customized solutions for both data as well as code quality a requirement. The diversity and the stochastic nature of Machine Learning algorithms require different test methods, each of which is suitable for a particular method. Conventional unit tests in test-automation environments provide the common, well-studied approach to tackle code quality issues, but Machine Learning applications pose new challenges and have different requirements, mostly as far the numerical computations are concerned. In this research work, a concrete use of property-based testing for quality assurance in the parameter learning algorithm of a probabilistic graphical model is described. The necessity and effectiveness of this method in comparison to unit tests is analyzed with concrete code examples for enhanced retraceability and interpretability, thus highly relevant for what is called explainable AI.
Originalspracheenglisch
TitelMachine Learning and Knowledge Extraction
Untertitel CD-MAKE 2020
Redakteure/-innenAndreas Holzinger, Peter Kieseberg, A. Min Tjoa
Herausgeber (Verlag)Springer, Cham
Seiten499-515
Seitenumfang17
ISBN (Print)978-3-030-57320-1
DOIs
PublikationsstatusVeröffentlicht - 1 Jan. 2020
Veranstaltung2020 Cross Domain Conference for Machine Learning and Knowledge Extraction - Virtuell, Irland
Dauer: 25 Aug. 202028 Aug. 2020

Publikationsreihe

NameLecture Notes in Computer Science
Band12279

Konferenz

Konferenz2020 Cross Domain Conference for Machine Learning and Knowledge Extraction
KurztitelCD-MAKE 2020
Land/GebietIrland
OrtVirtuell
Zeitraum25/08/2028/08/20

ASJC Scopus subject areas

  • Theoretische Informatik
  • Allgemeine Computerwissenschaft

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Property-Based Testing for Parameter Learning of Probabilistic Graphical Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren