Quantum invariants of hyperbolic knots and extreme values of trigonometric products

Christoph Aistleitner*, Bence Borda

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

In this paper, we study the relation between the function J41,0, which arises from a quantum invariant of the figure-eight knot, and Sudler’s trigonometric product. We find J41,0 up to a constant factor along continued fraction convergents to a quadratic irrational, and we show that its asymptotics deviates from the universal limiting behavior that has been found by Bettin and Drappeau in the case of large partial quotients. We relate the value of J41,0 to that of Sudler’s trigonometric product, and establish asymptotic upper and lower bounds for such Sudler products in response to a question of Lubinsky.

Originalspracheenglisch
Seiten (von - bis)759-782
Seitenumfang24
FachzeitschriftMathematische Zeitschrift
Jahrgang302
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Okt. 2022

ASJC Scopus subject areas

  • Allgemeine Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Quantum invariants of hyperbolic knots and extreme values of trigonometric products“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren