Random colorings and automorphism breaking in locally finite graphs

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

A colouring of a graph G is called distinguishing if its stabilizer in Aut G is trivial. It has been conjectured that, if every automorphism of a locally finite graph moves infinitely many vertices, then there is a distinguishing 2-colouring. We study properties of random 2-colourings of locally finite graphs and show that the stabilizer of such a colouring is almost surely nowhere dense in Aut G and a null set with respect to the Haar measure on the automorphism group. We also investigate random 2-colourings in several classes of locally finite graphs where the existence of a distinguishing 2-colouring has already been established. It turns out that in all of these cases a random 2-colouring is almost surely distinguishing.
Originalspracheenglisch
Seiten (von - bis)885-909
FachzeitschriftCombinatorics, Probability & Computing
Jahrgang22
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 2013

Fields of Expertise

  • Sonstiges

Fingerprint

Untersuchen Sie die Forschungsthemen von „Random colorings and automorphism breaking in locally finite graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren