Random Network Distillation Based Deep Reinforcement Learning for AGV Path Planning

Huilin Yin*, Shengkai Su, Yinjia Lin, Pengju Zhen, Karin Festl, Daniel Watzenig

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

With the flourishing development of intelligent warehousing systems, the technology of Automated Guided Vehicle (AGV) has experienced rapid growth. Within intelligent warehousing environments, AGV is required to safely and rapidly plan an optimal path in complex and dynamic environments. Most research has studied deep reinforcement learning to address this challenge. However, in the environments with sparse extrinsic rewards, these algorithms often converge slowly, learn inefficiently or fail to reach the target. Random Network Distillation (RND), as an exploration enhancement, can effectively improve the performance of proximal policy optimization, especially enhancing the additional intrinsic rewards of the AGV agent which is in sparse reward environments. Moreover, most of the current research continues to use 2D grid mazes as experimental environments. These environments have insufficient complexity and limited action sets. To solve this limitation, we present simulation environments of AGV path planning with continuous actions and positions for AGVs, so that it can be close to realistic physical scenarios. Based on our experiments and comprehensive analysis of the proposed method, the results demonstrate that our proposed method enables AGV to more rapidly complete path planning tasks with continuous actions in our environments. A video of part of our experiments can be found at https://youtu.be/lwrY9YesGmw.

Originalspracheenglisch
Titel35th IEEE Intelligent Vehicles Symposium, IV 2024
Herausgeber (Verlag)IEEE
Seiten2667-2673
Seitenumfang7
ISBN (elektronisch)9798350348811
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung35th IEEE Intelligent Vehicles Symposium: IV 2024 - Jeju Island, Südkorea
Dauer: 2 Juni 20245 Juni 2024

Konferenz

Konferenz35th IEEE Intelligent Vehicles Symposium
KurztitelIV 2024
Land/GebietSüdkorea
OrtJeju Island
Zeitraum2/06/245/06/24

ASJC Scopus subject areas

  • Angewandte Informatik
  • Fahrzeugbau
  • Modellierung und Simulation

Fingerprint

Untersuchen Sie die Forschungsthemen von „Random Network Distillation Based Deep Reinforcement Learning for AGV Path Planning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren