Ranking Transition-based Medical Recommendations using Assumption-based Argumentation

Kenneth Skiba, Matthias Thimm, Johannes Peter Wallner

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

We present a general framework to rank assumption in assumption-based argumentation frameworks (ABA frameworks), relying on their relationship to other assumptions and the syntactical structure of the ABA framework. We propose a new family of semantics for ABA frameworks that is using reductions to the abstract argumentation setting and leveraging existing ranking-based semantics for abstract argumentation. We show the suitability of these semantics by investigating a case study based on medical recommendations for patients with multiple health conditions and show that the relationship of the recommendations are enough to establish a ranking between the recommendations.
Originalspracheenglisch
TitelRobust Argumentation Machines - First International Conference, RATIO 2024, Proceedings
Redakteure/-innenPhilipp Cimiano, Anette Frank, Michael Kohlhase, Benno Stein
Herausgeber (Verlag)Springer
Seiten202-220
Seitenumfang19
ISBN (Print)9783031635359
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung1st International Conference on Recent Advances in Robust Argumentation Machines: RATIO 2024 - Bielefeld, Deutschland
Dauer: 5 Juni 20247 Juni 2024
https://ratio-conference.net/

Publikationsreihe

NameLecture Notes in Computer Science
Band14638

Konferenz

Konferenz1st International Conference on Recent Advances in Robust Argumentation Machines
KurztitelRATIO 2024
Land/GebietDeutschland
OrtBielefeld
Zeitraum5/06/247/06/24
Internetadresse

ASJC Scopus subject areas

  • Theoretische Informatik
  • Allgemeine Computerwissenschaft

Fingerprint

Untersuchen Sie die Forschungsthemen von „Ranking Transition-based Medical Recommendations using Assumption-based Argumentation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren