Re-Ingestion of Upstream Egress in a 1.5-Stage Gas Turbine Rig

J.A. Scobie, F.P. Hualca, M. Patinios, C.M. Sangan, J.M. Owen, G.D. Lock

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

In gas turbines, rim seals are fitted at the periphery of stator and rotor discs to minimise the purge flow required to seal the wheel-space between the discs. Ingestion (or ingress) of hot mainstream gases through rim seals is a threat to the operating life and integrity of highly-stressed components, particularly in the first-stage turbine. Egress of sealing flow from the first-stage can be re-ingested in downstream stages. This paper presents experimental results using a 1.5-stage test facility designed to investigate ingress into the wheelspaces upstream and downstream of a rotor disc. Re-ingestion was quantified using measurements of CO2 concentration, with seeding injected into the upstream and downstream sealing flows. Here a theoretical mixing model has been developed from first principles and validated by the experimental measurements. For the first time, a method to quantify the mass fraction of the fluid carried over from upstream egress into downstream ingress has been presented and measured; it was shown that this fraction increased as the downstream sealing flow rate increased. The upstream purge was shown to not significantly disturb the fluid dynamics but only partially mixes with the annulus flow near the downstream seal, with the ingested fluid emanating from the boundary layer on the blade platform. From the analogy between heat and mass transfer, the measured massconcentration flux is equivalent to an enthalpy flux and this re-ingestion could significantly reduce the adverse effect of ingress in the downstream wheel-space. Radial traverses using a concentration probe in and around the rim seal clearances provide insight into the complex interaction between the egress, ingress and mainstream flows.
Originalspracheenglisch
TitelProceedings of the ASME Turbo Expo
Seitenumfang11
BandVolume 5B-2017
ISBN (elektronisch)978-0-7918-5088-6
DOIs
PublikationsstatusVeröffentlicht - 2017
Extern publiziertJa
VeranstaltungASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition: GT 2017 - Charlotte, USA / Vereinigte Staaten
Dauer: 26 Juni 201730 Juni 2017

Konferenz

KonferenzASME Turbo Expo 2017: Turbomachinery Technical Conference and Exposition
Land/GebietUSA / Vereinigte Staaten
OrtCharlotte
Zeitraum26/06/1730/06/17

Fingerprint

Untersuchen Sie die Forschungsthemen von „Re-Ingestion of Upstream Egress in a 1.5-Stage Gas Turbine Rig“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren