Robust Localization of Key Fob Using Channel Impulse Response of Ultra Wide Band Sensors for Keyless Entry Systems

Abhiram Kolli*, Filippo Casamassima, Horst Possegger, Horst Bischof

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Using neural networks for localization of key fob within and surrounding a car as a security feature for keyless entry is fast emerging. In this paper we study: 1) the performance of pre-computed features of neural networks based UWB (ultra wide band) localization classification forming the baseline of our experiments. 2) Investigate the inherent robustness of various neural networks; therefore, we include the study of robustness of the adversarial examples without any adversarial training in this work. 3) Propose a multi-head self-supervised neural network architecture which outperforms the baseline neural networks without any adversarial training. The model’s performance improved by 67% at certain ranges of adversarial magnitude for fast gradient sign method and 37% each for basic iterative method and projected gradient descent method.
Originalspracheenglisch
TitelIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
DOIs
PublikationsstatusVeröffentlicht - 18 März 2024
Veranstaltung2024 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2024 - Seoul, Südkorea
Dauer: 14 Apr. 202419 Apr. 2024

Konferenz

Konferenz2024 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2024
KurztitelICASSP 2024
Land/GebietSüdkorea
OrtSeoul
Zeitraum14/04/2419/04/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Robust Localization of Key Fob Using Channel Impulse Response of Ultra Wide Band Sensors for Keyless Entry Systems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren