Abstract
State-of-the-art object detection systems for autonomous driving achieve promising results in clear weather conditions. However, such autonomous safety critical systems also need to work in degrading weather conditions, such as rain, fog and snow. Unfortunately, most approaches evaluate only on the KITTI dataset, which consists only of clear weather scenes. In this paper we address this issue and perform one of the most detailed evaluation on single and dual modality architectures on data captured in real weather conditions. We analyze the performance degradation of these architectures in degrading weather conditions. We demonstrate that an object detection architecture performing well in clear weather might not be able to handle degrading weather conditions. We also perform ablation studies on the dual modality architectures and show their limitations.
Originalsprache | englisch |
---|---|
Titel | 2021 IEEE International Intelligent Transportation Systems Conference, ITSC 2021 |
Herausgeber (Verlag) | IEEE |
Seiten | 2719-2724 |
Seitenumfang | 6 |
ISBN (elektronisch) | 9781728191423 |
DOIs | |
Publikationsstatus | Veröffentlicht - 19 Sept. 2021 |
Veranstaltung | 24th IEEE International Conference on Intelligent Transportation: ITSC 2021 - Hybrider Event, Österreich Dauer: 19 Sept. 2021 → 22 Sept. 2021 |
Konferenz
Konferenz | 24th IEEE International Conference on Intelligent Transportation |
---|---|
Kurztitel | ITSC 2021 |
Land/Gebiet | Österreich |
Ort | Hybrider Event |
Zeitraum | 19/09/21 → 22/09/21 |
ASJC Scopus subject areas
- Fahrzeugbau
- Maschinenbau
- Angewandte Informatik