S-TREK: Sequential Translation and Rotation Equivariant Keypoints for local feature extraction

Emanuele Santellani, Christian Sormann, Mattia Rossi, Andreas Kuhn, Friedrich Fraundorfer

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

In this work we introduce S-TREK, a novel local feature extractor that combines a deep keypoint detector, which is both translation and rotation equivariant by design, with a lightweight deep descriptor extractor. We train the S-TREK keypoint detector within a framework inspired by reinforcement learning, where we leverage a sequential procedure to maximize a reward directly related to keypoint repeatability. Our descriptor network is trained following a "detect, then describe" approach, where the descriptor loss is evaluated only at those locations where keypoints have been selected by the already trained detector. Extensive experiments on multiple benchmarks confirm the effectiveness of our proposed method, with S-TREK often outperforming other state-of-the-art methods in terms of repeatability and quality of the recovered poses, especially when dealing with in-plane rotations.
Originalspracheenglisch
Titel2023 IEEE/CVF International Conference on Computer Vision (ICCV)
Herausgeber (Verlag)IEEEXplore
Seiten9694-9703
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF International Conference on Computer Vision: ICCV 2023 - Paris, Frankreich
Dauer: 1 Okt. 20236 Okt. 2023

Konferenz

Konferenz2023 IEEE/CVF International Conference on Computer Vision
KurztitelICCV 2023
Land/GebietFrankreich
OrtParis
Zeitraum1/10/236/10/23

Fields of Expertise

  • Information, Communication & Computing

Dieses zitieren