Scale and Time Independent Clustering of Time Series Data

Florian Steinwidder, Istvan Szilagyi, Eva Eggeling, Torsten Ullrich

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

The analysis of time series, and in particular the identification of similar time series within a large set of time series, is an important part of visual analytics. This paper describes extensions of tree-based index structures to find self-similarities within sets of time series. It also describes filters that extend existing algorithms to better fit real-world, error-prone, incomplete data. The ability of time series clustering to detect common errors in real data is also described. These main contributions are illustrated with real data and the findings and lessons learned are summarised.

Originalspracheenglisch
Titel Proceedings of the 19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
Herausgeber (Verlag)SciTePress
Seiten583-592
Seitenumfang10
Band1, GRAPP, HUCAPP and IVAPP
ISBN (elektronisch)978-989-758-679-8
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications: VISIGRAPP 2024 - Rome, Italien
Dauer: 27 Feb. 202429 Feb. 2024

Konferenz

Konferenz19th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications
KurztitelVISIGRAPP 2024
Land/GebietItalien
OrtRome
Zeitraum27/02/2429/02/24

ASJC Scopus subject areas

  • Computergrafik und computergestütztes Design
  • Maschinelles Sehen und Mustererkennung
  • Human-computer interaction

Fingerprint

Untersuchen Sie die Forschungsthemen von „Scale and Time Independent Clustering of Time Series Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren