Structure Prediction for Surface-Induced Phases of Organic Monolayers: Overcoming the Combinatorial Bottleneck

Veronika Obersteiner, Michael Scherbela, Lukas Hörmann, Daniel Wegner, Oliver T. Hofmann*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Structure determination and prediction pose a major challenge to computational material science, demanding efficient global structure search techniques tailored to identify promising and relevant candidates. A major bottleneck is the fact that due to the many combinatorial possibilities, there are too many possible geometries to be sampled exhaustively. Here, an innovative computational approach to overcome this problem is presented that explores the potential energy landscape of commensurate organic/inorganic interfaces where the orientation and conformation of the molecules in the tightly packed layer is close to a favorable geometry adopted by isolated molecules on the surface. It is specifically designed to sample the energetically lowest lying structures, including the thermodynamic minimum, in order to survey the particularly rich and intricate polymorphism in such systems. The approach combines a systematic discretization of the configuration space, which leads to a huge reduction of the combinatorial possibilities with an efficient exploration of the potential energy surface inspired by the Basin-Hopping method. Interfacing the algorithm with first-principles calculations, the power and efficiency of this approach is demonstrated for the example of the organic molecule TCNE (tetracyanoethylene) on Au(111). For the pristine metal surface, the global minimum structure is found to be at variance with the geometry found by scanning tunneling microscopy. Rather, our results suggest the presence of surface adatoms or vacancies that are not imaged in the experiment.

Originalspracheenglisch
Seiten (von - bis)4453-4460
Seitenumfang8
FachzeitschriftNano Letters
Jahrgang17
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - 12 Juli 2017

ASJC Scopus subject areas

  • Bioengineering
  • Allgemeine Chemie
  • Allgemeine Materialwissenschaften
  • Physik der kondensierten Materie
  • Maschinenbau

Fingerprint

Untersuchen Sie die Forschungsthemen von „Structure Prediction for Surface-Induced Phases of Organic Monolayers: Overcoming the Combinatorial Bottleneck“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren