Test-Time Adversarial Detection and Robustness for Localizing Humans Using Ultra Wide Band Channel Impulse Responses

Abhiram Kolli, Muhammad Jehanzeb Mirza, Horst Possegger, Horst Bischof

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Keyless entry systems in cars are adopting neural networks for localizing its operators. Using test-time adversarial defences equip such systems with the ability to defend against adversarial attacks without prior training on adversarial samples. We propose a test-time adversarial example detector which detects the input adversarial example through quantifying the localized intermediate responses of a pre-trained neural network and confidence scores of an auxiliary softmax layer. Furthermore, in order to make the network robust, we extenuate the non-relevant features by non-iterative input sample clipping. Using our approach, mean performance over 15 levels of adversarial perturbations is increased by 53.3% for the fast gradient sign method and 60.9% for both the basic iterative method and the projected gradient method when compared to adversarial training.

Originalspracheenglisch
Titel31st European Signal Processing Conference, EUSIPCO 2023 - Proceedings
Seiten1365-1369
Seitenumfang5
ISBN (elektronisch)9789464593600
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung31st European Signal Processing Conference: EUSIPCO 2023 - Helsinki, Finnland
Dauer: 4 Sept. 20238 Sept. 2023

Konferenz

Konferenz31st European Signal Processing Conference
Land/GebietFinnland
OrtHelsinki
Zeitraum4/09/238/09/23

ASJC Scopus subject areas

  • Signalverarbeitung
  • Elektrotechnik und Elektronik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Test-Time Adversarial Detection and Robustness for Localizing Humans Using Ultra Wide Band Channel Impulse Responses“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren