Abstract
Given k blue cities, k red cities and a 2k x 2k distance matrix, the task in the bipartite travelling salesman problem is to find a shortest tour which alternately visits blue and red cities. We consider the special case of Van der Veen distance matrices and show that it remains NP-hard in general but can be solved in time O(k^2) when all vertices with odd indices are blue and all with even indices are red.
Originalsprache | englisch |
---|---|
Aufsatznummer | 107130 |
Fachzeitschrift | Operations Research Letters |
Jahrgang | 55 |
Frühes Online-Datum | 2024 |
DOIs | |
Publikationsstatus | Veröffentlicht - Juli 2024 |
ASJC Scopus subject areas
- Software
- Angewandte Mathematik
- Wirtschaftsingenieurwesen und Fertigungstechnik
- Managementlehre und Operations Resarch
Fields of Expertise
- Information, Communication & Computing