The effects of viscoelasticity on residual strain in aortic soft tissues

Will Zhang*, Gerhard Sommer, Justyna A. Niestrawska, Gerhard A. Holzapfel, David Nordsletten

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Residual stress is thought to play a critical role in modulating stress distributions in soft biological tissues and in maintaining the mechanobiological stress environment of cells. Residual stresses in arteries and other tissues are classically assessed through opening angle experiments, which demonstrate the continuous release of residual stresses over hours. These results are then assessed through nonlinear biomechanical models to provide estimates of the residual stresses in the intact state. Although well studied, these analyses typically focus on hyperelastic material models despite significant evidence of viscoelastic phenomena over both short and long timescales. In this work, we extended the state-of-the-art structural tensor model for arterial tissues from Holzapfel and Ogden for fractional viscoelasticity. Models were tuned to capture consistent levels of hysteresis observed in biaxial experiments, while also minimizing the fractional viscoelastic weighting and opening angles to correctly capture opening angle dynamics. Results suggest that a substantial portion of the human abdominal aorta is viscoelastic, but exhibits a low fractional order (i.e. more elastically). Additionally, a significantly larger opening angle in the fully unloaded state is necessary to produce comparable hysteresis in biaxial testing. As a consequence, conventional estimates of residual stress using hyperelastic approaches over-estimate their viscoelastic counterparts by a factor of 2. Thus, a viscoelastic approach, such as the one illustrated in this study, in combination with an additional source of rate-controlled viscoelastic data is necessary to accurately analyze the residual stress distribution in soft biological tissues. Statement of significance: Residual stress plays a crucial role in achieving a homeostatic stress environment in soft biological tissues. However, the analysis of residual stress typically focuses on hyperelastic material models despite evidence of viscoelastic behavior. This work is the first attempt at analyzing the effects of viscoelasticity on residual stress. The application of viscoelasticity was crucial for producing realistic opening dynamics in arteries. The overall residual stresses were estimated to be 50% less than those from using hyperelastic material models, while the opening angles were projected to be 25% more than those measured after 16 hours, suggesting underestimated residual strain. This study highlights the importance viscoelasticity in the analysis of residual stress even in weakly dissipative materials like the human aorta.

Originalspracheenglisch
Seiten (von - bis)398-411
Seitenumfang14
FachzeitschriftActa Biomaterialia
Jahrgang140
DOIs
PublikationsstatusVeröffentlicht - 1 März 2022

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterialien
  • Biochemie
  • Biomedizintechnik
  • Molekularbiologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „The effects of viscoelasticity on residual strain in aortic soft tissues“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren