The Markovian shot-noise risk model: a numerical method for Gerber-Shiu functions

Simon Pojer*, Stefan Thonhauser

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


In this paper, we consider discounted penalty functions, also called Gerber-Shiu functions, in a Markovian shot-noise environment. At first, we exploit the underlying structure of piecewise-deterministic Markov processes (PDMPs) to show that these penalty functions solve certain partial integro-differential equations (PIDEs). Since these equations cannot be solved exactly, we develop a numerical scheme that allows us to determine an approximation of such functions. These numerical solutions can be identified with penalty functions of continuous-time Markov chains with finite state space. Finally, we show the convergence of the corresponding generators over suitable sets of functions to prove that these Markov chains converge weakly against the original PDMP. That gives us that the numerical approximations converge to the discounted penalty functions of the original Markovian shot-noise environment.

FachzeitschriftMethodology and Computing in Applied Probability
PublikationsstatusVeröffentlicht - März 2023

ASJC Scopus subject areas

  • Mathematik (insg.)
  • Statistik und Wahrscheinlichkeit

Fields of Expertise

  • Information, Communication & Computing


Untersuchen Sie die Forschungsthemen von „The Markovian shot-noise risk model: a numerical method for Gerber-Shiu functions“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren