Abstract
To study plant-associated microorganisms has a long history that reaches back to Lorenz Hiltner’s definition of the rhizosphere in 1904 (Hartmann et al., 2008). Today, we know that microorganisms colonizing plant surfaces and inner tissues play an eminent role in shaping of our planet—from our natural vegetation to intense agricultural production systems up to human health. Plant-associated microorganisms have to be considered as key drivers for plant health, productivity, community composition, and ecosystem functioning.
For this e-book “The plant microbiome and its importance for plant and human health” we collected 18 articles, including reviews, original, and opinion articles that highlight the current knowledge regarding plant microbiomes, their specificity, diversity, and function as well as all aspects studying the management of plant microbiomes to improve plant performance and health. The contribution of the single articles of this research topic to these questions is discussed in detail in the mini-review and 1st chapter of the book by Berg et al.(2014a). Overall the presented articles confirm that the plant-associated microbiome has greatly expanded the metabolic repertoire of plants and often increase resource uptake and provide novel nutritional and defense pathways. Thus, the plant microbiome has a direct impact on plant functional traits, such as leaf longevity, specific leaf area, leaf nutrient levels, and shoot/root ratio. By providing novel nutritional and defense pathways and by modifying biochemical pathways, the plant associated microbiome can enhance or decrease species coexistence and consequently influence not only a …
For this e-book “The plant microbiome and its importance for plant and human health” we collected 18 articles, including reviews, original, and opinion articles that highlight the current knowledge regarding plant microbiomes, their specificity, diversity, and function as well as all aspects studying the management of plant microbiomes to improve plant performance and health. The contribution of the single articles of this research topic to these questions is discussed in detail in the mini-review and 1st chapter of the book by Berg et al.(2014a). Overall the presented articles confirm that the plant-associated microbiome has greatly expanded the metabolic repertoire of plants and often increase resource uptake and provide novel nutritional and defense pathways. Thus, the plant microbiome has a direct impact on plant functional traits, such as leaf longevity, specific leaf area, leaf nutrient levels, and shoot/root ratio. By providing novel nutritional and defense pathways and by modifying biochemical pathways, the plant associated microbiome can enhance or decrease species coexistence and consequently influence not only a …
Originalsprache | englisch |
---|---|
Seiten (von - bis) | 491-491 |
Fachzeitschrift | Frontiers in Microbiology |
DOIs | |
Publikationsstatus | Veröffentlicht - 2014 |
Fields of Expertise
- Sonstiges