Total Deep Variation for Noisy Exit Wave Reconstruction in Transmission Electron Microscopy

Thomas Pinetz*, Erich Kobler, Christian Doberstein, Benjamin Berkels, Alexander Effland

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Transmission electron microscopes (TEMs) are ubiquitous devices for high-resolution imaging on an atomic level. A key problem related to TEMs is the reconstruction of the exit wave, which is the electron signal at the exit plane of the examined specimen. Frequently, this reconstruction is cast as an ill-posed nonlinear inverse problem. In this work, we integrate the data-driven total deep variation regularizer to reconstruct the exit wave in this inverse problem. In several numerical experiments, the applicability of the proposed method is demonstrated for different materials.

Originalspracheenglisch
TitelScale Space and Variational Methods in Computer Vision - 8th International Conference, SSVM 2021, Proceedings
Redakteure/-innenAbderrahim Elmoataz, Jalal Fadili, Yvain Quéau, Julien Rabin, Loïc Simon
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten491-502
Seitenumfang12
ISBN (Print)9783030755485
DOIs
PublikationsstatusVeröffentlicht - 2021
Veranstaltung8th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2021 - Virtual, Online
Dauer: 16 Mai 202120 Mai 2021

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band12679 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz8th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2021
OrtVirtual, Online
Zeitraum16/05/2120/05/21

ASJC Scopus subject areas

  • Theoretische Informatik
  • Informatik (insg.)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Total Deep Variation for Noisy Exit Wave Reconstruction in Transmission Electron Microscopy“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren