Towards Crossing-Free Hamiltonian Cycles in Simple Drawings of Complete Graphs

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

It is a longstanding conjecture that every simple drawing of a complete graph on n ≥ 3 vertices contains a crossing-free Hamiltonian cycle. We strengthen this conjecture to “there exists a crossing-free Hamiltonian path between each pair of vertices” and show that this stronger conjecture holds for several classes of simple drawings, including strongly c-monotone drawings and cylindrical drawings. As a second main contribution, we give an overview on different classes of simple drawings and investigate inclusion relations between them up to weak isomorphism.
Originalspracheenglisch
Seiten (von - bis)5:1–5:30
FachzeitschriftComputing in Geometry and Topology
Jahrgang3
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 1 Jan. 2024

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards Crossing-Free Hamiltonian Cycles in Simple Drawings of Complete Graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren