Towards reinforcement learning - driven TBM cutter changing policies

Tom F. Hansen*, Georg H. Erharter, Thomas Marcher

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Optimizing the cutter changing process for tunnel boring machines (TBMs) is crucial for minimizing maintenance costs and maximizing excavation efficiency. This paper introduces TunnRL-CC, a computational framework that utilizes reinforcement learning to autonomously determine cutter-changing strategies. TunnRL-CC's realistic simulation models cutter wear under varying rock conditions, including hard rock and blockyness. A reinforcement learning agent is trained to learn optimal cutter-changing policies based on a reward function that balances cutter conditions and operational costs. The agent demonstrates innovative decision-making, adapting to changing excavation conditions. TunnRL-CC's proposed methodology significantly differs from traditional cutter changing practices, which rely heavily on operator experience. Although TunnRL-CC has not been applied in practical projects, its theoretical basis and comprehensive computational experiments demonstrate its capability to significantly improve TBM cutter maintenance procedures.

Originalspracheenglisch
Aufsatznummer105505
FachzeitschriftAutomation in Construction
Jahrgang165
DOIs
PublikationsstatusVeröffentlicht - Sept. 2024

ASJC Scopus subject areas

  • Steuerungs- und Systemtechnik
  • Tief- und Ingenieurbau
  • Bauwesen

Fingerprint

Untersuchen Sie die Forschungsthemen von „Towards reinforcement learning - driven TBM cutter changing policies“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren