Trifocal Tensor and Relative Pose Estimation With Known Vertical Direction

Tao Li, Zhenbao Yu, Banglei Guan*, Jianli Han, Weimin Lv, Friedrich Fraundorfer

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

This work presents two novel solvers for estimating the relative poses among views with known vertical directions. The vertical directions of camera views can be easily obtained using inertial measurement units (IMUs) which have been widely used in autonomous vehicles, mobile phones, and unmanned aerial vehicles (UAVs). Given the known vertical directions, our algorithms only need to solve for two rotation angles and two translation vectors. In this paper, a linear closed-form solution has been described, requiring only four point correspondences in three views. We also propose a minimal solution with three point correspondences using the latest Gröbner basis solver. Since the proposed methods require fewer point correspondences, they can be efficiently applied within the RANSAC framework for outliers removal and pose estimation in visual odometry. The proposed method has been tested on both synthetic data and real-world scenes from KITTI. The experimental results show that the accuracy of the estimated poses is superior to other alternative methods.

Originalspracheenglisch
Seiten (von - bis)1305 - 1312
FachzeitschriftIEEE Robotics and Automation Letters
Jahrgang10
Ausgabenummer2
Frühes Online-DatumDez. 2024
DOIs
PublikationsstatusVeröffentlicht - Feb. 2025

ASJC Scopus subject areas

  • Steuerungs- und Systemtechnik
  • Biomedizintechnik
  • Human-computer interaction
  • Maschinenbau
  • Maschinelles Sehen und Mustererkennung
  • Angewandte Informatik
  • Steuerung und Optimierung
  • Artificial intelligence

Fingerprint

Untersuchen Sie die Forschungsthemen von „Trifocal Tensor and Relative Pose Estimation With Known Vertical Direction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren