Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs

Oswin Aichholzer, Alfredo García, Javier Tejel, Birgit Vogtenhuber, Alexandra Weinberger

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Simple drawings are drawings of graphs in which the edges are Jordan arcs and each pair of edges share at most one point (a proper crossing or a common endpoint). A simple drawing is c-monotone if there is a point O such that each ray emanating from O crosses each edge of the drawing at most once. We introduce a special kind of c-monotone drawings that we call generalized twisted drawings. A c-monotone drawing is generalized twisted if there is a ray emanating from O that crosses all the edges of the drawing. Via this class of drawings, we show that every simple drawing of the complete graph with n vertices contains Ω ( n 1 2 ) pairwise disjoint edges and a plane cycle (and hence path) of length Ω ( log n log log n ) . Both results improve over best previously published lower bounds. On the way we show several structural results and properties of generalized twisted and c-monotone drawings, some of which we believe to be of independent interest. For example, we show that a drawing D is c-monotone if there exists a point O such that no edge of D is crossed more than once by any ray that emanates from O and passes through a vertex of D.

Originalspracheenglisch
Seiten (von - bis)40-66
Seitenumfang27
FachzeitschriftDiscrete & Computational Geometry
Jahrgang71
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - Jan. 2024

Schlagwörter

  • simple drawings

ASJC Scopus subject areas

  • Theoretische Informatik
  • Diskrete Mathematik und Kombinatorik
  • Geometrie und Topologie
  • Theoretische Informatik und Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Twisted Ways to Find Plane Structures in Simple Drawings of Complete Graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren