Using Artificial Intelligence Algorithms to Predict Self-Reported Problem Gambling Among Online Casino Gamblers from Different Countries Using Account-Based Player Data

Niklas Hopfgartner, Michael Auer, Denis Helic, Mark D. Griffiths*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The prevalence of online gambling and the potential for related harm necessitate predictive models for early detection of problem gambling. The present study expands upon prior research by incorporating a cross-country approach to predict self-reported problem gambling using player-tracking data in an online casino setting. Utilizing a secondary dataset comprising 1743 British, Canadian, and Spanish online casino gamblers (39% female; mean age = 42.4 years; 27.4% scoring 8 + on the Problem Gambling Severity Index), the present study examined the association between demographic, behavioral, and monetary intensity variables with self-reported problem gambling, employing a hierarchical logistic regression model. The study also tested the efficacy of five different machine learning models to predict self-reported problem gambling among online casino gamblers from different countries. The findings indicated that behavioral variables, such as taking self-exclusions, frequent in-session monetary depositing, and account depletion, were paramount in predicting self-reported problem gambling over monetary intensity variables. The study also demonstrated that while machine learning models can effectively predict problem gambling across different countries without country-specific training data, incorporating such data improved the overall model performance. This suggests that specific behavioral patterns are universal, yet nuanced differences across countries exist that can improve prediction models.

Originalspracheenglisch
FachzeitschriftInternational Journal of Mental Health and Addiction
Frühes Online-Datum7 Mai 2024
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung. - 7 Mai 2024

ASJC Scopus subject areas

  • Psychiatrie und psychische Gesundheit

Fingerprint

Untersuchen Sie die Forschungsthemen von „Using Artificial Intelligence Algorithms to Predict Self-Reported Problem Gambling Among Online Casino Gamblers from Different Countries Using Account-Based Player Data“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren