Using autoencoders for session-based job recommendations

Emanuel Lacic, Markus Reiter-Haas, Dominik Kowald, Manoj Reddy Dareddy, Junghoo Cho, Elisabeth Lex*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


In this work, we address the problem of providing job recommendations in an online session setting, in which we do not have full user histories. We propose a recommendation approach, which uses different autoencoder architectures to encode sessions from the job domain. The inferred latent session representations are then used in a k-nearest neighbor manner to recommend jobs within a session. We evaluate our approach on three datasets, (1) a proprietary dataset we gathered from the Austrian student job portal Studo Jobs, (2) a dataset released by XING after the RecSys 2017 Challenge and (3) anonymized job applications released by CareerBuilder in 2012. Our results show that autoencoders provide relevant job recommendations as well as maintain a high coverage and, at the same time, can outperform state-of-the-art session-based recommendation techniques in terms of system-based and session-based novelty.

Seiten (von - bis)617-658
FachzeitschriftUser Modeling and User-Adapted Interaction
PublikationsstatusVeröffentlicht - 1 Sept. 2020

ASJC Scopus subject areas

  • Ausbildung bzw. Denomination
  • Human-computer interaction
  • Angewandte Informatik


Untersuchen Sie die Forschungsthemen von „Using autoencoders for session-based job recommendations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren