Visual Analysis of Cyclic Time Series with Semantic Zoom

Patrick Louis, Belgin Mutlu, Josef Suschnigg, Tobias Schreck

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Visual analysis (VA) tasks often involve exploring large and complex multi-dimensional datasets to identify trends and anomalies. However, the challenge lies in displaying all the data and maintaining the desired level of detail within the limited screen space. In this paper, we propose a solution that incorporates multiple visualizations and semantic zooming to address this compromise. Our visualization tool focuses on cycle-dependent data, showcasing time series with repetitive behavior. Through semantic zooming, cyclic time series data can be displayed in large quantities and high levels of detail without the need for multiple views. Our proposed tool includes three independent visualizations: line plots, horizon graphs, and adaptive heatmaps. By offering different visualization options, we aim to provide a rich and flexible analytical experience that response to the different user needs and encourages comprehensive data exploration. The tool accommodates both novice and expert users, allowing for intuitive analysis as well as advanced techniques for detailed examination. Our approach follows the mantra of 'overview first, zoom and filter, then details-on-demand' facilitating rapid detection and exploration of patterns and trends. In this paper, we present the detailed design, interaction capabilities with semantic zoom, and the results of a user study that demonstrate the effectiveness and usefulness of our proposed tool.

Originalspracheenglisch
TitelProceedings - 2024 28th International Conference Information Visualisation, IV 2024
Redakteure/-innenEbad Banissi, Nuno Datia, Joao Moura Pires, Anna Ursyn, Kawa Nazemi, Boris Kovalerchuk, Razvan Andonie, Marina Gavrilova, Minoru Nakayama, Quang Vinh Nguyen, Mabule Samuel Mabakane, Adrian Rusu, Filippo Sciarrone, Marco Temperini, Fatma Bouali, Gilles Venturini, Tony Huang
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers
Seiten52-57
Seitenumfang6
ISBN (elektronisch)9798350380163
DOIs
PublikationsstatusVeröffentlicht - 17 Okt. 2024
Veranstaltung28th International Conference Information Visualisation, IV 2024 - Coimbra, Portugal
Dauer: 22 Juli 202426 Juli 2024

Publikationsreihe

NameProceedings of the International Conference on Information Visualisation
ISSN (Print)1093-9547

Konferenz

Konferenz28th International Conference Information Visualisation, IV 2024
Land/GebietPortugal
OrtCoimbra
Zeitraum22/07/2426/07/24

ASJC Scopus subject areas

  • Software
  • Signalverarbeitung
  • Maschinelles Sehen und Mustererkennung

Fingerprint

Untersuchen Sie die Forschungsthemen von „Visual Analysis of Cyclic Time Series with Semantic Zoom“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren