Abstract
Objective: Voice problems that arise during everyday vocal use can hardly be captured by standard outpatient voice assessments. In preparation for a digital health application to automatically assess longitudinal voice data ‘in the wild’ – the VocDoc, the aim of this paper was to study vocal fatigue from the speaker's perspective, the healthcare professional's perspective, and the ‘machine's’ perspective. Methods: We collected data of four voice healthy speakers completing a 90-min reading task. Every 10 min the speakers were asked about subjective voice characteristics. Then, we elaborated on the task of elapsed speaking time recognition: We carried out listening experiments with speech and language therapists and employed random forests on the basis of extracted acoustic features. We validated our models speaker-dependently and speaker-independently and analysed underlying feature importances. For an additional, clinical application-oriented scenario, we extended our dataset for lecture recordings of another two speakers. Results: Self- and expert-assessments were not consistent. With mean F1 scores up to 0.78, automatic elapsed speaking time recognition worked reliably in the speaker-dependent scenario only. A small set of acoustic features – other than features previously reported to reflect vocal fatigue – was found to universally describe long-term variations of the voice. Conclusion: Vocal fatigue seems to have individual effects across different speakers. Machine learning has the potential to automatically detect and characterise vocal changes over time. Significance: Our study provides technical underpinnings for a future mobile solution to objectively capture pathological long-term voice variations in everyday life settings and make them clinically accessible.
Originalsprache | englisch |
---|---|
Aufsatznummer | 105595 |
Fachzeitschrift | Biomedical Signal Processing and Control |
Jahrgang | 88 |
Ausgabenummer | B |
DOIs | |
Publikationsstatus | Veröffentlicht - Feb. 2024 |
ASJC Scopus subject areas
- Signalverarbeitung
- Gesundheitsinformatik
- Biomedizintechnik