WKGM: weighted k-space generative model for parallel imaging reconstruction

Zongjiang Tu, Die Liu, Xiaoqing Wang, Chen Jiang, Pengwen Zhu, Minghui Zhang, Shanshan Wang, Dong Liang, Qiegen Liu*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Deep learning based parallel imaging (PI) has made great progress in recent years to accelerate MRI. Nevertheless, it still has some limitations: for example, the robustness and flexibility of existing methods are greatly deficient. In this work, we propose a method to explore the k-space domain learning via robust generative modeling for flexible calibrationless PI reconstruction, coined the weighted k-space generative model (WKGM). Specifically, WKGM is a generalized k-space domain model, where the k-space weighting technology and high-dimensional space augmentation design are efficiently incorporated for score-based generative model training, resulting in good and robust reconstructions. In addition, WKGM is flexible and thus can be synergistically combined with various traditional k-space PI models, which can make full use of the correlation between multi-coil data and realize calibrationless PI. Even though our model was trained on only 500 images, experimental results with varying sampling patterns and acceleration factors demonstrate that WKGM can attain state-of-the-art reconstruction results with the well learned k-space generative prior.

Originalspracheenglisch
Aufsatznummere5005
FachzeitschriftNMR in Biomedicine
Jahrgang36
Ausgabenummer11
DOIs
PublikationsstatusVeröffentlicht - Nov. 2023

ASJC Scopus subject areas

  • Molekularmedizin
  • Radiologie, Nuklearmedizin und Bildgebung
  • Spektroskopie

Fingerprint

Untersuchen Sie die Forschungsthemen von „WKGM: weighted k-space generative model for parallel imaging reconstruction“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren