Worldwide High-fidelity Road Extraction from Aerial and Satellite Imagery enabled by Low-fidelity OpenStreetMap Labels

Corentin Henry, Friedrich Fraundorfer

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

We present a novel pipeline for road segmentation supervision, using a state-of-the-art vision transformer to tackle two critical challenges: the generalization of a segmentation model worldwide and the training using low-fidelity labels. Specifically, we fine-tune a Segment Anything Model on road segmentation tasks to generate accurate pseudo-labels from OpenStreetMap road centerline prompts. These labels are then used to fine-tune a OneFormer model, pre-trained on publicly available high-fidelity labels from existing aerial and satellite imagery datasets, to improve its generalization capability. Experimental results show that it is possible to extend the application scope of a single binary segmentation model to extract roads anywhere in the world without additional manual annotation, achieving a performance comparable to the state of the art.
Originalspracheenglisch
TitelGerman Conference on Pattern Recognition (GCPR)
Seiten1-15
Seitenumfang15
PublikationsstatusVeröffentlicht - 1 Sept. 2024
VeranstaltungGerman Conference on Pattern Recognition and the International Symposium on Vision, Modeling, and Visualization, GCPR-VMV 2024 - Munich, Deutschland
Dauer: 10 Sept. 202413 Sept. 2024

Konferenz

KonferenzGerman Conference on Pattern Recognition and the International Symposium on Vision, Modeling, and Visualization, GCPR-VMV 2024
Land/GebietDeutschland
OrtMunich
Zeitraum10/09/2413/09/24

Dieses zitieren