Light-wave driven charge- and spin dynamics

Activity: Talk or presentationTalk at workshop, seminar or courseScience to science


The enormous electric field strength of ultrafast laser waveforms allows to steer electronic motion and control electronic excitation so fast, that secondary processes disrupting coherence and striving for an equilibrium have hard time catching up – even in condensed phase systems.
We investigate the opportunities this temporal segregation offers to transfer coherent control ideas as pioneered in atomic and molecular ensembles to solids. I will discuss two experiments demonstrating that single cycle optical fields allow manipulating electronic and spin degrees of freedom in solid state systems at optical clock rates faster than de-coherence. Ultrafast bidirectional energy transfer between a light-field and the band-structure of silica proves the early times reversibility of electronic excitations and holds promise of novel ultrafast, coherent optoelectronic applications. As a corollary of this ultrafast coherent modification of the electronic system, in suitably chosen heterostructures also the spin system can be manipulated coherently. Optically induced spin transfer is demonstrated as a route to the direct, all-optical manipulation of macroscopic magnetic moments on previously inaccessible attosecond timescales.
Period6 May 2022
Held atKarl-Franzens-Universität Graz, Institut für Chemie, Physikalische & Theoretische Chemie, Austria
Degree of RecognitionRegional

Fields of Expertise

  • Advanced Materials Science